这篇文章作为 An Introduction to PGM, Jodan 的简单总结.

条件独立(Conditional Independance)


基本定义

条件独立的定义:

对于随机变量\(X, Y, Z\), 在给定Z的情况下, X和Y条件独立, 记作 \(X \perp Y \mid Z\), 当且仅当:

\[f_{X, Y \mid Z}(x, y \mid z) = f_{X \mid Z}(x \mid z)f_{Y \mid Z}(y \mid z)\]

条件独立的等价形式:

\[X \perp Y \mid Z\]

当且仅当:

\[f_{X \mid Y,Z}(x \mid y,z) = f_{X \mid Z}(x \mid z)\]
证明如下

如果

\[\begin{align} f(x, y \mid z) = f(x \mid z)f(y \mid z) & \Leftrightarrow \frac{f(x, y, z)}{f(z)} = \frac{f(x, y)}{f(z)} \frac{f(y, z)}{f(z)} \\ & \Leftrightarrow \frac{f(x, y, z)}{f(y, z)} = \frac{f(x, y)}{f(z)} \\ & \Leftrightarrow f(x \mid y, z) = f(x, z) \end{align}\]

条件独立的推论

\[\begin{eqnarray} \tag{1} X \perp Y \mid Z & \Rightarrow & Y \perp X \mid Z \\ \tag{2} Y \perp X \mid Z & \Rightarrow & Y \perp h(X) \mid Z \\ \tag{3} Y \perp X \mid Z & \Rightarrow & Y \perp X \mid \{Z, h(X)\} \Leftrightarrow Y \perp \{X, h(X)\} \mid Z \\ \tag{4} Y \perp X \mid Z & \ \ and \ \ & W \perp X\ \mid\ \{Y, Z\} \Rightarrow \{Y, W\} \perp X \mid Z \\ \tag{5} Y \perp X \mid Z & and & Z \perp X \mid Y \Rightarrow \{Y, Z\} \perp X \end{eqnarray}\]
证明2

TODO

证明3

TODO

证明4

TODO

证明5

TODO

(3) 中 \(Y \perp X \mid \{Z, h(X)\} \Leftrightarrow Y \perp \{X, h(X)\} \mid Z\) 可采用条件独立的等价形式进行证明

Directed Graphical Models


定义

图 ⇒ 概率分布的函数

图 ⇒ 分布中蕴含的条件独立

Undirected PGM